skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Fengqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed.Here, we analyzedRdarkvariability and its associations withVcmaxand other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative.We found that leaf magnesium and calcium concentrations were more significant in explaining cross‐siteRdarkthan commonly used traits like LMA, N and P concentrations, but univariate trait–Rdarkrelationships were always weak (r2 ≤ 0.15) and forest‐specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait–Rdarkrelationships, accurately predicted cross‐siteRdark(r2 = 0.65) and pinpointed the factors contributing toRdarkvariability.Our findings reveal a few novel traits with greater cross‐site scalability regardingRdark, challenging the use of empirical trait–Rdarkrelationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimatingRdark, which could ultimately improve process modeling of terrestrial plant respiration. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract. Accurate assessment of leaf functional traits is crucial for a diverse range of applications from crop phenotyping to parameterizing global climate models. Leaf reflectance spectroscopy offers a promising avenue to advance ecological and agricultural research by complementing traditional, time-consuming gas exchange measurements. However, the development of robust hyperspectral models for predicting leaf photosynthetic capacity and associated traits from reflectance data has been hindered by limited data availability across species and environments. Here we introduce the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. The GSTI repository currently encompasses over 7500 observations from 397 species and 41 sites gathered from 36 published and unpublished studies, thereby offering a key resource for developing and validating hyperspectral models of leaf photosynthetic capacity. The GSTI database is developed on GitHub (https://github.com/plantphys/gsti, last access: 4 January 2026) and published to ESS-DIVE https://doi.org/10.15485/2530733, Lamour et al., 2025). It includes gas exchange data, derived photosynthetic parameters, and key leaf traits often associated with traditional gas exchange measurements such as leaf mass per area and leaf elemental composition. By providing a standardized repository for data sharing and analysis, we present a critical step towards creating hyperspectral models for predicting photosynthetic traits and associated leaf traits for terrestrial plants. 
    more » « less
    Free, publicly-accessible full text available January 9, 2027
  3. Summary Allocation of leaf phosphorus (P) among different functional fractions represents a crucial adaptive strategy for optimizing P use. However, it remains challenging to monitor the variability in leaf P fractions and, ultimately, to understand P‐use strategies across diverse plant communities.We explored relationships between five leaf P fractions (orthophosphate P, Pi; lipid P, PL; nucleic acid P, PN; metabolite P, PM; and residual P, PR) and 11 leaf economic traits of 58 woody species from three biomes in China, including temperate, subtropical and tropical forests. Then, we developed trait‐based models and spectral models for leaf P fractions and compared their predictive abilities.We found that plants exhibiting conservative strategies increased the proportions of PNand PM, but decreased the proportions of Piand PL, thus enhancing photosynthetic P‐use efficiency, especially under P limitation. Spectral models outperformed trait‐based models in predicting cross‐site leaf P fractions, regardless of concentrations (R2 = 0.50–0.88 vs 0.34–0.74) or proportions (R2 = 0.43–0.70 vs 0.06–0.45).These findings enhance our understanding of leaf P‐allocation strategies and highlight reflectance spectroscopy as a promising alternative for characterizing large‐scale leaf P fractions and plant P‐use strategies, which could ultimately improve the physiological representation of the plant P cycle in land surface models. 
    more » « less